Channels

 

Special Offers & Promotions

 

 

Latest News

 

 

View Channel

New Products

 

 

View Channel

Video Presentations

 

 

View Channel

Separation Science

 

 

View Channel

Microscopy & Image Analysis

 

 

View Channel

Laboratory Automation & IT Solutions

 

 

View Channel

 

New Insights Published on Key Protein Interactions Involved in the Bacterial Flagellar Motor Complex

Wyatt Technology Logo

New Insights Published on Key Protein Interactions Involved in the Bacterial Flagellar Motor Complex Show Promise for Other Difficult Biomolecular Systems

New Application Note from Wyatt Technology Showcases the Ability of CG-MALS to Quantify Complex Proteins

Wyatt Technology Corporation, the world leader in absolute macromolecular characterization instrumentation and software, has today published a new application note highlighting a study on the complex interactions between proteins and how they modulate the rotational direction of bacteria flagella. The application note highlights the benefit of using composition-gradient multi-angle static light scattering (CG-MALS) to confirm the specific binding sites of the protein. It offers a new perspective over traditional methods to understand complex protein-protein interactions.

The application note demonstrates how the use of the Calypso® II composition-gradient system combined with a DAWN® HELEOS® from Wyatt Technology provides insights into complicated protein-protein interactions, which are not measurable by nuclear magnetic resonance (NMR) or other traditional techniques.  The study focusses on the bacteria flagella, an electrical motor which aids the movement of the bacteria, and the proteins which affect its function. In particular, the different domains of one flagellar protein (FliG) bind two different sites on its binding partner (FliM) with different affinity, as part of the flagellar motor switching mechanism.

In the first part of the analysis, the binding affinity between FliM and the two FliG domains (FliGM and FliGC) were measured individually. The results demonstrate a 100-fold difference in binding affinity between FliGM (KD = 6.6 μM) and FliGC (KD = 580 μM) for FliM.  This large difference in affinity supports the current hypothesis for switching the rotational direction of the flagella:  The tighter-binding FliGM domain remains bound while the weaker-binding FliGc domain can be displaced by other regulatory proteins to change the direction of rotation.

When the binding between FliM and full-length FliG was tested, a slow, time-dependent association into large complexes was observed.  This large association was hinted at by previous NMR studies but could not be quantified by this technique.  Measuring the molar mass as a function of time by CG-MALS provides direction for future studies and may help determine the mechanism of flagellar motor switching. 

With this application note, Wyatt Technology demonstrates how CG-MALS provided invaluable information about the complex interactions between the proteins involved in the bacterial flagellar motor switching mechanism.  Sophia Kenrick from Wyatt Technology explains, “CG-MALS provides new data explaining the binding of FliG to FliM, which could not have been obtained by other methods. The same CG-MALS technique used to investigate the structure-function relationship of the flagellar proteins can be extended to other complex protein assemblies, such as the large microchannels bacteria and other pathogens use to inject toxins into a host. Understanding how the proteins work together may help with research into how to disrupt these interactions and control the spread of these pathogens.”

The Calypso II combined with a DAWN HELEOS or miniDAWN® TREOS® MALS detector encompass a complete composition-gradient multi-angle light scattering (CG-MALS) system, capable of characterizing a wide range of interactions.  These instruments prepare solutions of different molecular composition or concentration and measure the change in molar mass as complexes form or dissociate. No special modifications, e.g., sample tagging or immobilization procedures, are necessary: samples are unlabeled and entirely in solution. Calypso's automation enhances productivity while the CALYPSO software provides an unparalleled selection of interaction models to provide the affinity and absolute stoichiometry of the complexes formed in solution. Several application notes have been drafted on this product, detailing the success and ease Calypso II can bring to your studies.


more about Calypso II


more about Wyatt Technology


more news from Wyatt


 


If you have not logged into the website then please enter your details below.



 

News Channels

 

 

Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin

 

Request your free copies HERE

 

 

 

Popular this Month

Top 10 most popular articles this month

 

 

Today's Picks

 

 

 

 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


 

Media Partners

 

Exhibitions & Events