Special Offers & Promotions



Latest News



View Channel

New Products



View Channel

Video Presentations



View Channel

Separation Science



View Channel

Microscopy & Image Analysis



View Channel

Laboratory Automation & IT Solutions



View Channel


EPFL Scientists Use Nanoscale IR Sectroscopy to Demonstrate ? to ? Secondary Structure Transition Associated with Amyloid Formation

publication date: Jun 20, 2014
author/source: Anasys Instruments

Anasys Instruments reports on EPFL’s latest research on lysozyme droplets and α-synuclein macromolecular aggregates illustrating application of the nanoscale AFM-IR technique to demonstrate α to β secondary structure transition associated with amyloid formation. 

anasys instruments nanoProteins aggregating into amyloid structures are involved in important neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. During aggregation, initially monomeric proteins undergo internal structural rearrangement forming amyloid fibrils with a universal cross β -sheet quaternary structure. During fibrillation, several coexisting amyloidogenic species are formed and the study of these species would allow improved understanding of the pathways of amyloid formation. 

Conventional FTIR spectroscopy is a key method for studying the structural conversion during amyloid formation but it is only able to give average spectra of a heterogeneous solution due to its poor spatial resolution. Sub-micron chemical characterization, enabled by the AFM-IR technique, of amyloidogenic structures such as oligomers and fibrils is central to understanding how proteins misfold and aggregate. The researchers clearly resolved the shift in the amide I band which identifies an α to β secondary structure transition associated with amyloid formation and were able to spatially map the transition. This work was published in the journal Lab on a Chip [1]. 

The analytical system used for this research is the nanoIR product manufactured by Anasys Instruments. Andrzej Kulik, the main researcher behind this effort at EPFL, has described AFM-IR as “one of the most important breakthroughs in the AFM technique since it adds chemical composition information to nanoscale morphology. Its ease of use will ensure its wide adoption given the crucial importance of nanoscale chemical composition in most research applications.” 

more about anasys instruments

more news from anasys instruments

If you have not logged into the website then please enter your details below.


Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin


Request your free copies HERE




Popular this Month

Top 10 most popular articles this month



Today's Picks



Looking for a Supplier?

Search by company or by product


Company Name:






Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


Media Partners


Exhibitions & Events