Follow us...

 

Search News Archives

News Channels

 

New Laboratory Products

Lab News

Research & Case Studies

Microscopy | Image Analysis

Separation Science

Brochures & Literature

Videos

Events | Webinars

 

 

Conferences | Events

High performance objectives optimised for live cell imaging

Nikon has launched its latest high performance, high numerical aperture (N.A.) objectives for use in biological applications. Featuring the highest ever N.A.s for water immersion objectives (1.27 and 1.25), these new objectives employ Nikon’s unique, ultra low refractive index nano crystal coat, and are optimised for live cell imaging, providing the highest transmission at a broad range of wavelengths. This results in high contrast image acquisition, with faster image capture times at lower excitation levels, achieving less photobleaching and minimising damage to live cells, allowing longer-term observation. Comprising the CFI Plan Apo IR 60XWI and Lambda S series – CFI Apo 40XWIlS, CFI Apo 60XHlS and CFI Apo LWD 40XWIlS, the new objectives feature high optical performance across the widest spectral wavelength with high chromatic corrections for sharp contrast imaging.

Nikon’s exclusive nano crystal coating technology employs multiple layers of extra low refractive index nano particles that virtually eliminate internal lens element reflections across a wide range of wavelengths extending from the ultraviolet to the near-infrared. It is particularly effective in reducing stray light reflections and flare in high angle (large N.A.) lenses. The Lambda S objectives are optimised for spectral imaging with the ability to allow confocal imaging of multi-probe specimens. Advanced optical design and improvements in performance enable the CFI Apo 40XWIlS, in particular, to correct chromatic aberration from 405nm to 850nm. CFI Plan Apo IR 60XWI corrects from the visible range to 1064nm, facilitating infrared light imaging techniques, such as multiphoton excitation and laser tweezers. In addition, CFI Apo LWD 40XWIlS features a long working distance of 0.6mm for deep image capture.

“Thanks to recent developments of new microscope technologies such as spectral imaging, fluorescence observation with the use of multiple wavelengths of light and near-infrared light imaging applications, there is an increased need to observe live cells for longer periods of time while minimising damage caused by the excitation light,” commented Stan Schwartz, vice president, Nikon Instruments, Inc. “We believe these four types of objectives will significantly contribute to live cell imaging studies that are carried out in research institutes of biology and medicine as well as in core laboratories and universities.”



 

 

Popular this Month...

Our Top 10 most popular articles this month

 

Today's Picks...

 

 


 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd

 


Promotions

 

Media Partners