Follow us...

 

Search News Archives

Channels

News

 

 

View Channel

Laboratory Products

 

 

View Channel

Separation Science

 

 

View Channel

Microscopy | Image Analysis

 

 

View Channel

IT Solutions and Laboratory Automation

 

 

View Channel

 

Conferences | Events

AI tailors artificial DNA for future drug development

publication date: Dec 14, 2022
 | 
author/source: Chalmers University of Technology

ai-tailors-artificial-dna-future-drug-development

 

With the help of artificial intelligence, researchers at Chalmers University of Technology, Sweden, have succeeded in designing synthetic DNA that controls the cells' protein production. The technology can contribute to the development and production of vaccines, drugs for severe diseases, as well as alternative food proteins much faster and at significantly lower costs than today.

How our genes are expressed is a process that is fundamental to the functionality of cells in all living organisms. Simply put, the genetic code in DNA is transcribed to the molecule messenger RNA (mRNA), which tells the cell's factory which protein to produce and in which quantities.

Researchers have put a lot of effort into trying to control gene expression because it can, among other things, contribute to the development of protein-based drugs. A recent example is the mRNA vaccine against Covid-19, which instructed the body's cells to produce the same protein found on the surface of the coronavirus. The body's immune system could then learn to form antibodies against the virus. Likewise, it is possible to teach the body's immune system to defeat cancer cells or other complex diseases if one understands the genetic code behind the production of specific proteins.

Most of today's new drugs are protein-based, but the techniques for producing them are both expensive and slow, because it is difficult to control how the DNA is expressed.  Last year, a research group at Chalmers, led by Aleksej Zelezniak, Associate Professor of Systems Biology, took an important step in understanding and controlling how much of a protein is made from a certain DNA sequence.

"First it was about being able to fully ‘read’ the DNA molecule's instructions. Now we have succeeded in designing our own DNA that contains the exact instructions to control the quantity of a specific protein", says Aleksej Zelezniak about the research group's latest important breakthrough.

 

DNA molecules made-to-order

The principle behind the new method is similar to when an AI generates faces that look like real people. By learning what a large selection of faces looks like, the AI can then create completely new but natural-looking faces. It is then easy to modify a face by, for example, saying that it should look older, or have a different hairstyle. On the other hand, programming a believable face from scratch, without the use of AI, would have been much more difficult and time-consuming. Similarly, the researchers' AI has been taught the structure and regulatory code of DNA. The AI then designs synthetic DNA, where it is easy to modify its regulatory information in the desired direction of gene expression. Simply put, the AI is told how much of a gene is desired and then  ‘prints’ the appropriate DNA sequence.

“DNA is an incredibly long and complex molecule. It is thus experimentally extremely challenging to make changes to it by iteratively reading and changing it, then reading and changing it again. This way it takes years of research to find something that works. Instead, it is much more effective to let an AI learn the principles of navigating DNA. What otherwise takes years is now shortened to weeks or days”, says first author Jan Zrimec, a research associate at the National Institute of Biology in Slovenia and past postdoc in Aleksej Zelezniak’s group.

The researchers have developed their method in the yeast Saccharomyces cerevisiae, whose cells resemble mammalian cells. The next step is to use human cells. The researchers have hopes that their progress will have an impact on the development of new as well as existing drugs.

"Protein-based drugs for complex diseases or alternative sustainable food proteins can take many years and can be extremely expensive to develop. Some are so expensive that it is impossible to obtain a return on investment, making them economically nonviable. With our technology, it is possible to develop and manufacture proteins much more efficiently so that they can be marketed", says Aleksej Zelezniak.

The authors of the study are Jan Zrimec, Xiaozhi Fu, Azam Sheikh Muhammad, Christos Skrekas, Vykintas Jauniskis, Nora K. Speicher, Christoph S. Börlin, Vilhelm Verendel, Morteza Haghir Chehreghani, Devdatt Dubhashi, Verena Siewers, Florian David, Jens Nielsen and Aleksej Zelezniak.

The researchers are active at Chalmers University of Technology, Sverige; National Institute of Biology, Slovenia; Biomatter Designs, Lithuania; Institute of Biotechnology, Lithuania; BioInnovation Institute, Denmark; King’s College London, UK.

Read the full study: Controlling gene expression with deep generative design of regulatory DNA

 

About Chalmers University of Technology

Chalmers University of Technology in Gothenburg, Sweden, conducts research and education in technology and natural sciences at a high international level. The university has 3100 employees and 10,000 students, and offers education in engineering, science, shipping and architecture.

With scientific excellence as a basis, Chalmers promotes knowledge and technical solutions for a sustainable world. Through global commitment and entrepreneurship, we foster an innovative spirit, in close collaboration with wider society.The EU’s biggest research initiative – the Graphene Flagship – is coordinated by Chalmers. We are also leading the development of a Swedish quantum computer.

Chalmers was founded in 1829 and has the same motto today as it did then: Avancez – forward.

 



 

Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin

 

Request your free copies HERE

 

 

 

Popular this Month

Top 10 most popular articles this month

 

Today's Picks

 

 


 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


 

Media Partners