Channels

 

Special Offers & Promotions

 

 

Latest News

 

 

View Channel

New Products

 

 

View Channel

Video Presentations

 

 

View Channel

Separation Science

 

 

View Channel

Microscopy & Image Analysis

 

 

View Channel

Laboratory Automation & IT Solutions

 

 

View Channel

 

Renishaw Raman Systems Used to Study 2D Materials at Boston University, Massachusetts, USA

publication date: May 21, 2015
 | 
author/source: Renishaw

Renishaw, a world leader in metrology and spectroscopy technologies, report on the use of their Raman spectrometers to study 2D materials in the Optical Characterization and Nanophotonics Laboratory at Boston University. 

Dr Anna SwanFounded in 1839, Boston University has over 33,000 students. The Department of Electrical and Computer Engineering house the Optical Characterization and Nanophotonics (OCN) laboratory at Boston University. Here, research focuses on developing, and applying, advanced optical characterization techniques to the study of solid-state and biological phenomena, at the nanoscale. The group uses Renishaw Raman spectrometers to measure strain in 2D materials and the friction between 2D materials and their underlying substrates. 

Anna Swan is an associate Professor in the Electrical and Computer Engineering Department, and one of the three directors running the multi-disciplinary lab. The research group is currently focusing on 2D materials, such as graphene, boron nitride, molybdenum disulphide and phosphorene. They are interested in how strain, and designed strain fields, can be used to manipulate the electronic and optical properties in these materials. For example, a certain strain field configuration creates a magnetic pseudo field that can localize electrons and create Landau levels. For this work, they are looking at how they can control the boundary conditions and manipulate the extent of friction between the 2D material and substrate. They are using Raman spectroscopy to measure strain, the coupling between strain and Raman shifts, and the friction. 

Dr Swan and her colleagues have been using Renishaw Raman systems for a number of years, recently acquiring a new inVia confocal Raman microscope. This has become the main user instrument in the group for research and general purpose sampling. The older Renishaw 1000 is used for specialised experiments, connected to different custom-designed chamber, for specific research under environmentally controlled conditions. The inVia provides a number of advantages such as easy switching between lasers, fast spectral mapping, automatic alignment and integrated calibration. This has made it the ‘go to system’ for the lab. These advanced features make inVia an ideal multi-user system across a wide range of different experiments. 

Asked why the inVia was purchased by the lab, Dr Swan says “The performance of the 1000 system together with the excellent support from Renishaw made the decision an easy one for us. Although sounding a bit corny, inVia is an efficient, easy-to-use, easy-to-share system. It is pretty well perfectly suited to our requirements.” 


more about renishaw


 

 



 

News Channels

 

 

Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin

 

Request your free copies HERE

 

 

 

Popular this Month

Top 10 most popular articles this month

 

 

Today's Picks

 

 

 

 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


 

Media Partners

 

Exhibitions & Events