Channels

 

Special Offers & Promotions

 

 

Latest News

 

 

View Channel

New Products

 

 

View Channel

Video Presentations

 

 

View Channel

Separation Science

 

 

View Channel

Microscopy & Image Analysis

 

 

View Channel

Laboratory Automation & IT Solutions

 

 

View Channel

 

Breakthrough Discovery in Diagnostic Tools that can Replace Commonly Used and Fragile Antibodies

publication date: Nov 30, 2017
 | 
author/source: University of Leicester

Biotechnology Group at the University of Leicester working in collaboration with spin-out company MIP Diagnostics Ltd

University of LeicesterExperts from the Biotechnology Group at the University of Leicester led by Professor Sergey Piletsky in collaboration with the spin-off company MIP Diagnostics Ltd have announced the development of polymeric materials with molecular recognition capabilities which hold the potential to outperform natural antibodies in various diagnostic applications

In a newly released article “A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format” the researchers successfully demonstrated that polymer nanoparticles produced by the molecular imprinting technique (MIP nanoparticles) can bind to the target molecule with the same or higher affinity and specificity than widely used commercially available antibodies and against challenging targets.

Additionally, their ease of manufacture, short lead time, high affinity and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

The demonstration assays described in the above article allowed for the determination of target analytes at picomolar concentrations. The results confirmed that MIP nanoparticles can be used as viable alternatives to antibodies in ELISA format, showing similar to, or better performance than natural receptors like antibodies.

The assays possessed much higher stability, which overall is a very strong endorsement for considering industrial application of MIP nanoparticles in diagnostic platforms.

Professor Piletsky, from the University of Leicester’s Department of Chemistry, said: “It is now well over twenty years since the first demonstration that molecularly imprinted polymers can be used as the recognition material in assays for clinically significant drugs. At that time, seminal work clearly illustrated the principle, but the assays described were unlikely to present a threat to established methods which relied on antibodies.

“Recent advances in the synthesis of MIP nanoparticles have overcome the perceived drawbacks of MIPs such as binding site heterogeneity, leaching problems/poor binding kinetics and lack of suitable industrial manufacturing protocols. 

“The new solid-phase manufacturing approach used at MIP Diagnostics uses immobilised target molecules at the surface of a solid support, hence its name. At the surface of this support, monomers are polymerised into polymer nanoparticles, which are then selected on the basis of their affinity for the target, which is re-useable. In addition to producing high-performance binders, this synthetic approach is suitable for scale-up and automation making it very attractive for the commercial use. Being chemical entities, additional functional layers may be created during the MIP nanoparticle synthesis to modify the properties of the particles without affecting their recognition ability.”

The robust nature of MIP nanoparticles makes them ideal reagents for a wide range of applications including point-of-care diagnostics and in field based testing.

They can withstand harsh environments, such as extremes of pH and temperature, seawater and can even function in organic solvents.

MIPs have successfully been created and deployed against all major target classes including peptides, proteins and other macromolecular structures, as well as smaller chemical entities such as inorganic ions, explosives, drugs, toxins, their metabolites and common biochemical species such as enzyme cofactors.

The article, ‘A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format’, is published in Scientific Reports 6, Article number: 37638 (2016), and is available via doi:10.1038/srep37638.


more about university of leicester


 



 

News Channels

 

 

Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin

 

Request your free copies HERE

 

 

 

Popular this Month

Top 10 most popular articles this month

 

 

Today's Picks

 

 

 

 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


 

Media Partners

 

Exhibitions & Events