Members Login
Channels
Special Offers & Promotions
Redesigned Scale Objective Lens from Carl Zeiss for Brain Research

Using the microscope to visualize and track nerve cells deep into the brain is an important step in the decoding of the brain circuitry. The new objective lens from Carl Zeiss now brings this goal considerably closer to realization. Carl Zeiss has designed the plan-apochromatic 20x/1.0 VIS-IR objective lens for the clearing method known as Scale developed by Dr. Atsushi Miyawaki at the RIKEN Brain Science Institute in Japan. A special water-based reagent solution transforms the sheath substance of the nerve cells into a transparent matrix without impairing the signals from fluorescent marker and tracer substances.
"I am very impressed by the new possibilities," says Dr. Atsushi Miyawaki, whose results have been published in Nature Neuroscience and provoked broad interest in the neurosciences. In one of the most important research projects in the field of brain research, the Connectome project, the objective lens will help scientists obtain a better understanding of brain connectivity.
For more information visit www.zeiss.com/microscopy
Media Partners