Channels

 

Special Offers & Promotions

 

 

Latest News

 

 

View Channel

New Products

 

 

View Channel

Video Presentations

 

 

View Channel

Separation Science

 

 

View Channel

Microscopy & Image Analysis

 

 

View Channel

Laboratory Automation & IT Solutions

 

 

View Channel

 

Edinburgh Instruments

publication date: Oct 5, 2016
 | 
author/source: Edinburgh Instruments

FLS 980

Research in optical materials is rapidly moving towards stable, high-power laser sources emitting in the mid-infrared (mid-IR) region.

Despite their promising applications, there are currently not many commercially available lasers for this range of wavelengths (2 μm ? 8 μm). One of their main applications is in absorption spectroscopy for the detection of trace gases and atmospheric pollutants: many organic compounds have characteristic mid-IR bands, so the detection in this region is highly selective. There is also great potential for mid-IR lasers in the field of materials processing due to the strong absorption of some polymers in this region. In addition, human skin is a very efficient absorber at 3 μm thanks to a water band, which makes 3-μm lasers a powerful tool for surgery.

One of the first steps towards a commercially viable laser is to characterise the emission properties of the gain medium, which requires a spectrometer with detection in the mid-IR. Edinburgh Instruments mid-IR fluorescence spectrometers are currently used by leading scientists around the world to advance the research in laser materials.

One of Edinburgh Instruments’ mid-IR fluorescence spectrometers is in the Shanghai Institute of Optics and Fine Mechanics (China). Here, materials for solid-state mid-IR lasers such as rare earth-doped silicate or Cr,Fe:ZnSe have been successfully developed with help from an FLSP920 Spectrometer.

Near-IR lasers with emission near to 2 μm are also of great interest in medical imaging. Recently, a promising material with ~ 1.8 μm emission has been reported by the Changchun University of Science and Technology (China), also using an FLSP920 from Edinburgh Instruments.

Left: Mid-IR luminescence from NaY0.77Yb0.20Er0.03F4 measured in an FLS980 with an InSb detector. Right: IR emission spectra of Er-doped tellurite glasses upon 808 nm excitation. Lanthanide-doped materials are promising gain media for IR lasers.

Edinburgh Instruments offers an extensive range of IR detectors to characterise the spectra and lifetime of IR-emitting materials, with options to suit all budgets. The FLS980 spectrometer offers InGaAs detectors with cut-off wavelengths of 1.65 μm, 2.05 μm and 2.55 μm, InAs detectors (3.1 μm) and InSb (5.5 μm) detectors; as well as InGaAs detector arrays. The FS5 Spectrofluorometer has the NIRA+ option, covering up to 1650 nm.

As one of the world’s leading manufacturers of state-of-the-art fluorescence spectroscopic instrumentation, we pride ourselves in being able to meet the most demanding research and technical requirements.


more about edinburgh instruments


 

 



 

Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin

 

Request your free copies HERE

 

 

 

Popular this Month

Top 10 most popular articles this month

 

 

Today's Picks

 


 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


 

Media Partners

 

Exhibitions & Events