Channels

 

Special Offers & Promotions

 

 

Latest News

 

 

View Channel

New Products

 

 

View Channel

Video Presentations

 

 

View Channel

Separation Science

 

 

View Channel

Microscopy & Image Analysis

 

 

View Channel

Laboratory Automation & IT Solutions

 

 

View Channel

 

Genetic mosaicism more common than thought

publication date: Jul 1, 2024
 | 
author/source: The European Molecular Biology Laboratory

genetic-mosaicism-more-common-than-thought


Blood stem cells from healthy people carry major chromosomal alterations, suggesting we are all genetic mosaics, according to a new study from EMBL and the Max Delbrück Center.

Researchers at EMBL and the MDC-BIMSB found that approximately one in 40 human bone marrow cells carry massive chromosomal alterations without causing any apparent disease or abnormality.

Even so-called normal cells carry all sorts of genetic mutations, meaning there are more genetic differences between individual cells in our bodies than between different human beings.
 
The discovery was enabled by a single-cell sequencing technology called Strand-seq, a unique DNA sequencing technique that can reveal subtle details of genomes in single cells that are too difficult to detect with other methods.

In a study led by Jan Korbel at the European Molecular Biology Laboratory (EMBL) and Ashley Sanders at the Berlin Institute for Medical Systems Biology of the Max Delbrück Center (MDC-BIMSB), researchers have found that approximately one in 40 human bone marrow cells carry massive chromosomal alterations – copy number variations and chromosomal rearrangements, for example – without causing any apparent disease or abnormality. In addition, cell samples from people over the age of 60 tended to have higher numbers of cells with such genomic alterations, suggesting a previously unidentified mechanism that may contribute to ageing-related diseases. The study was published in the journal Nature Genetics.
“The study highlights that we are all mosaics,” said Korbel, who is Senior Scientist in the Genome Biology Unit and Head of Data Science at EMBL Heidelberg. “Even so-called normal cells carry all sorts of genetic mutations. Ultimately, this means that there are more genetic differences between individual cells in our bodies than between different human beings.”

Both Korbel and Sanders, Group Leader at the Max Delbrück Center study how genetic structural variation – deletions, duplications, inversions, and translocations of large sections of the human genome – contributes to the development of disease. In the cancer field, it is well known that genetic mutations can cause cells to grow out of control and lead to the formation of a tumour, explained Sanders. “We are applying similar concepts to understand how non-cancerous diseases develop,” she added.

The discovery was enabled by a single-cell sequencing technology called Strand-seq, a unique DNA sequencing technique that can reveal subtle details of genomes in single cells that are too difficult to detect with other methods. Sanders is a pioneer in the development of this technology. As part of her doctoral research, she helped develop the Strand-seq protocol, which she later honed with colleagues while working as postdoctoral fellow in Korbel’s lab.

Strand-seq enables researchers to detect structural variants in individual cells with better precision and resolution than any other sequencing technology allows, Sanders said. The technology has ushered in an entirely new understanding of genetic mutations and is now being widely used to characterise genomes and to help translate findings into clinical research.

“We are just recognising that contrary to what we learned in textbooks, every cell in our body doesn't have the exact same DNA,” she said.

 

Genetic mosaicism is common

The study represents the first time anyone has used Strand-seq technology to study mutations in the DNA of healthy people. The researchers included biological samples from a range of age groups – from newborn to 92-years-old – and found mutations in blood stem cells, which are located in the bone marrow, in 84% of the study participants, indicating that large genetic mutations are very common.

“It’s just amazing how much heterogeneity there is in our genomes that has gone undetected so far,” said Sanders. “What this means in terms of how we define normal human ageing and how this can impact the types of diseases we get is really an important question for the field.”

The study also found that in people over the age of 60, bone marrow cells carrying genetic alterations tended to be more abundant, with populations of specific genetic variants, or sub-clones, more common than others. The frequent presence of these sub-clones suggests a possible connection to ageing.

But whether the mechanisms that keep sub-clones from proliferating in check break down as we age, or whether the expansion of sub-clones itself contributes to diseases of ageing is not known, said Korbel. “In the future, our single cell studies should give us clearer insights into how these mutations that previously went unnoticed affect our health and potentially contribute to how we age.”

 

About The European Molecular Biology Laboratory (EMBL)

The European Molecular Biology Laboratory (EMBL) is Europe’s life sciences laboratory. We provide leadership and coordination for the life sciences across Europe, and our world-class fundamental research seeks collaborative and interdisciplinary solutions for some of society’s biggest challenges. We provide training for students and scientists, drive the development of new technology and methods in the life sciences, and offer state-of-the-art research infrastructure for a wide range of experimental and data services.

EMBL is an intergovernmental organisation with 29 member states, one associate member, and one prospective member. At our six sites in Barcelona,​​ Grenoble, Hamburg, Heidelberg, Hinxton near Cambridge, and Rome, we seek to better understand life in its natural context, from molecules to ecosystems.

 

About The Max Delbrück Center

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association (Max Delbrück Center) is one of the world’s leading biomedical research institutions. Max Delbrück, a Berlin native, was a Nobel laureate and one of the founders of molecular biology. At the locations in Berlin-Buch and Mitte, researchers from some 70 countries study human biology – investigating the foundations of life from its most elementary building blocks to systems-wide mechanisms. By understanding what regulates or disrupts the dynamic equilibrium of a cell, an organ, or the entire body, we can prevent diseases, diagnose them earlier, and stop their progression with tailored therapies. Patients should be able to benefit as soon as possible from basic research discoveries. This is why the Max Delbrück Center supports spin-off creation and participates in collaborative networks. It works in close partnership with Charité – Universitätsmedizin Berlin in the jointly-run Experimental and Clinical Research Center (ECRC), the Berlin Institute of Health (BIH) at Charité, and the German Center for Cardiovascular Research (DZHK). Founded in 1992, the Max Delbrück Center today employs 1,800 people and is 90 percent funded by the German federal government and 10 percent by the State of Berlin.

 



 

News Channels

 

 

Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin

 

Request your free copies HERE

 

 

 

Popular this Month

Top 10 most popular articles this month

 

 

Today's Picks

 

 

 

 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


 

Media Partners

 

Exhibitions & Events