Channels

 

Special Offers & Promotions

 

 

Latest News

 

 

View Channel

New Products

 

 

View Channel

Video Presentations

 

 

View Channel

Separation Science

 

 

View Channel

Microscopy & Image Analysis

 

 

View Channel

Laboratory Automation & IT Solutions

 

 

View Channel

 

Research Looks at Lifelike Organ Models Produced on 3D Printers

publication date: Oct 18, 2018
 | 
author/source: Karl Landsteiner University of Health Sciences

Karl Landsteiner University of Health SciencesBiomedical engineers from Karl Landsteiner University of Health Sciences in Krems launch project focused on 3D printing of tissue models

A research project recently initiated at Karl Landsteiner University of Health Sciences aims to produce organ models with realistic material properties. These biological replicas will mainly be deployed in research and medical training, which will help to reduce the use of valuable donor organs and enable physicians to practise complex surgical procedures. The initial stage of the project involves in-depth analysis of material and organ properties. The data generated will provide "recipes" for 3D printers, which will then produce materials with the requisite properties on demand.

Doctors need to practise as well – although preferably not on patients. Large numbers of donor organs are normally used for training purposes. But they can only be used once for a short time and show a huge variability. New approaches – like 3D printing – are required so that doctors can practise complex procedures repeatedly on the same tissue sample. A team headed by Prof. Dieter Pahr of the Department of Anatomy and Biomechanics at Karl Landsteiner University of Health Sciences in Krems (KL Krems) has now laid the foundations for exceptionally innovative research on the topic. Together with partners ACMIT GmbH in Wiener Neustadt and Vienna University of Technology, Prof. Pahr aims to pave the way for 3D printing of true-to-life tissue and organ models.


REALISTIC PRINTING

3D printers are already used in day-to-day medical activities, including to create models of complex surgical situations. This enables doctors to gain a better appreciation of spatial properties, to try out new surgical instruments, and practise hand movements. However, such models lack the realistic characteristics of biological tissue. This is where the project, which is funded by NÖ Forschungs- und Bildungsges.m.b.H. (NFB), kicks in. As Prof. Pahr explains: "In order to lay the groundwork for improved 3D printing of medical models, we will first identify the biomechanical characteristics that have a decisive influence on how practitioners sense tissue and organ properties. Then we will investigate what materials are suited to 3D printing, their attributes, and what lifelike tissue and organs can be printed." Based on this initial investigation, the team will then produce the first test prints using suitable 3D printing techniques.


TOP-QUALITY ANALYTICAL LABORATORY

When analysing these 3D prints of biological tissue, Prof. Pahr and his team will benefit from KL Krems’ exceptionally well equipped laboratory for testing of biological materials and structures for medical purposes. The laboratory is ideal for performing mechanical-structure and materials tests, as well as CNC manufacturing and cutting-edge tissue processing. Facilities for X-ray microtomography, which allows for 3D, x-ray imaging of highly detailed internal structures, are also available, backed up by state-of-the-art image analysis equipment and microscopes, and advanced IT infrastructure. These will be used to compare the tissue properties obtained from biomechanical experiments and those actually achieved based on 3D printing. According to Prof. Pahr: "In this way, we’ll develop a computer model that enables us to predict the mechanical qualities of 3D printed biological tissue based on the choice of the bulk material and printable microstructures."

In fact, Prof. Pahr is aiming to make even bigger strides with this project. "We will regularly compare the predictions with the printing results, with a view to constantly optimising the system. Ultimately, we will develop a system in which we input the required measured tissue properties, and the output will come in the shape of a recipe for the necessary base materials and micro-structured geometry." This would represent a significant advance, which in turn would open the door for highly customised and realistic tissue and organ models for medical use. The combination of materials research, medical know-how and expertise in computer-model generation exemplifies the full scope of KL Krems’ research, which concentrates on niche fields in bridge disciplines that are highly relevant to health policy, and creates added value for all concerned.




 

Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin

 

Request your free copies HERE

 

 

 

Popular this Month

Top 10 most popular articles this month

 

 

Today's Picks

 


 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


 

Media Partners

 

Exhibitions & Events