Channels

 

Special Offers & Promotions

 

 

Latest News

 

 

View Channel

New Products

 

 

View Channel

Video Presentations

 

 

View Channel

Separation Science

 

 

View Channel

Microscopy & Image Analysis

 

 

View Channel

Laboratory Automation & IT Solutions

 

 

View Channel

 

JPK Reports on the Research in the Group of Professor Taiji Adachi at Kyoto University

publication date: Apr 30, 2018
 | 
author/source: JPK Instruments AG

Dr Koichiro Maki with the NanoWizardThe group utilizes the JPK NanoWizard® AFM to study mechanotransduction mechanisms.

JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the research of Professor Taiji Adachi which uses the JPK NanoWizard® AFM to understand the mechanical basis of mechanotransduction at multiple scales.

Professor Taiji Adachi heads a multidiscipline research group at Kyoto University. One of its goals is to understand the mechanical basis of mechanotransduction at multiscale. This means they carry out experimental and theoretical approaches at tissue, cell and molecular scale. In addition, they are trying to combine the approaches to propose new concepts/mechanisms in the fields of biomechanics and mechanobiology.

One of the group's PhD students was Koichiro Maki, currently doing a post-doctoral assignment at the University of Tokyo. He takes up the story. “To explore the mechanisms in mechanotransduction, especially at molecular scale, it is inevitable to look at conformations and mechanical behaviour of proteins. Some mechano-sensitive proteins are known to dynamically change their conformations under mechanical force and therefore regulate their interaction with binding partners to accomplish mechanotransduction in cells. However, this is quite complicated since cells express a variety of proteins and, at the same time, forces exerted to cells are also dynamically changing in their amounts and directions. Therefore, we have employed AFM for simplified in vitro single-molecule experiments to explore dynamical changes in conformations and mechanical behaviour in proteins under determined mechanical force by AFM. In 2016, we revealed that one of mechano-sensitive proteins, alpha-catenin, can assume stable intermediate conformation to sustain its activated state under tension, which we named as “mechano-adaptive conformational change”1. In addition, in our recently published paper, we have proposed a novel approach to observe the recruitment of binding partner proteins by total internal reflection microscopy (TIRF), at real time, to mechanically stretched proteins by AFM2. We hope our methods are utilized in integrating mechanical and biochemical information to understand cellular mechanotransduction.”

Speaking of his experiences with using AFM: “I moved into the Kyoto lab at the same time the NanoWizard® was delivered. I was lucky to have great support from colleagues and the JPK team. The NanoWizard® ULTRA for high speed imaging was very easy to set up and use, something I did not find using other makes of AFM where the high-speed imaging of proteins in liquids was quite unstable.


more news from JPK



If you have not logged into the website then please enter your details below.



 

News Channels

 

 

Subscribe to any of our newsletters for the latest on new laboratory products, industry news, case studies and much more!

Newsletters from Lab Bulletin

 

Request your free copies HERE

 

 

 

Popular this Month

Top 10 most popular articles this month

 

 

Today's Picks

 

 

 

 

Looking for a Supplier?

Search by company or by product

 


Company Name:

Product:


 

 

 

 

Please note Lab Bulletin does not sell, supply any of the products featured on this website. If you have an enquiry, please use the contact form below the article or company profile and we will send your request to the supplier so that they can contact you directly.

Lab Bulletin is published by newleaf marketing communications ltd.


 

Media Partners

 

Exhibitions & Events